Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work and flux of available potential energy . Approximately half of these gains are transferred into kinetic energy while the other half is lost to turbulent dissipation, bottom drag, and divergence in vertical pressure work. Small-scale internal waves emanating downstream of the sill within the overflow layer radiate upward but dissipate most of their energy within the dense overflow layer and at its upper interface. The strongly sheared and highly stratified upper interface acts as a critical layer inhibiting any appreciable upward radiation of energy via topographically generated lee waves. Form drag of , estimated from the pressure drop across the sill, is consistent with energy lost to dissipation and internal wave fluxes. The topographic drag removes momentum from the mean flow, slowing it down and feeding a countercurrent aloft. The processes discussed in this study combine to convert about one-third of the energy released from the cross-sill density difference into turbulent mixing within the overflow and at its upper interface. The observed and modeled vertical momentum flux divergence sustains gradients in shear and stratification, thereby maintaining an efficient route for abyssal water mass transformation downstream of this Samoan Passage sill.more » « less
-
Abstract Destratification and restratification of a ~50-m-thick surface boundary layer in the North Pacific Subtropical Front are examined during 24–31 March 2017 in the wake of a storm using a ~5-km array of 23 chi-augmented EM-APEX profiling floats ( u , υ , T , S , χ T ), as well as towyo and ADCP ship surveys, shipboard air-sea surface fluxes, and parameterized shortwave penetrative radiation. During the first four days, nocturnal destabilizing buoyancy fluxes mixed the surface layer over almost its full depth every night followed by restratification to N ~ 2 × 10 −3 rad s −1 during daylight. Starting on 28 March, nocturnal destabilizing buoyancy fluxes weakened because weakening winds reduced latent heat flux. Shallow mixing and stratified transition layers formed above ~20-m depth. A remnant layer in the lower part of the surface layer was insulated from destabilizing surface forcing. Penetrative radiation, turbulent buoyancy fluxes, and horizontal buoyancy advection all contribute to its restratification, closing the budget to within measurement uncertainties. Buoyancy advective restratification (slumping) plays a minor role. Before 28 March, measured advective restratification is confined to daytime; is often destratifying; and is much stronger than predictions of geostrophic adjustment, mixed-layer eddy instability, and Ekman buoyancy flux because of storm-forced inertial shear. Starting on 28 March, while small, the subinertial envelope of measured buoyancy advective restratification in the remnant layer proceeds as predicted by mixed-layer eddy parameterizations.more » « less
-
McPhaden, Michael (Ed.)Abstract As part of a National Oceanographic Partnership Program (NOPP) project, seven teams—comprising investigators from universities, federal laboratories, and industry—are collaboratively investigating the generation, propagation, and dissipation of internal waves in the global ocean using complementary, state-of-the-art observations and model simulations. Internal waves, generated by the interaction of tides, winds, and mean flows, permeate the ocean and influence its physical state. Internal waves transport scalar and vector properties—both geographically and across scales—and contribute to irreversible mixing, modulate acoustic propagation, and complicate the identification of subinertial (e.g., geostrophic) flows in observations. For these reasons, accurately representing internal waves in global ocean forecast models is a high priority. The collaborations reported here are improving the understanding of the internal wave life cycle and enhancing model skill in simulating it. Three observational teams are collecting in situ data using 1) redeployable moored arrays that resolve internal waves from multiple directions, 2) global deployments of profiling floats that measure internal wave energy fluxes, shear, and mixing, and 3) high-resolution arrays that focus on bottom boundary layer processes. Four modeling teams are guiding the design and placement of these observation platforms and are using the collected observations to 1) improve internal wave representation and dissipation in ocean models, 2) conduct high-resolution process studies, and 3) implement data assimilation in idealized, regional, and global simulations. These efforts are further supported by high-resolution sea surface height measurements from the new Surface Water and Ocean Topography (SWOT) satellite, which provide context for in situ observations and improve ocean forecasting systems. Significance StatementA collaboration among scientists from U.S. universities, national laboratories, and industry is advancing our understanding and prediction of internal waves in the global ocean. These waves—characterized by vertical scales of tens to hundreds of meters and horizontal scales of tens to hundreds of kilometers—play a critical role in maritime commerce, naval operations, and ocean circulation. The team integrates novel observational approaches, including internal wave–resolving moored arrays, ship-of-opportunity float deployments, bottom boundary layer–distributed sensor networks, and satellite wide-swath altimetry, with cutting-edge global, regional, and process-model simulations. Together, these efforts are improving the representation of internal wave processes in ocean models and enhancing their predictive capabilities for operational forecasts.more » « less
-
Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.more » « less
-
The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 10 6 m 3 s −1 ) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.more » « less
An official website of the United States government
